Problem 19. Let $T : X \to Y$ be a bounded operator between Banach spaces X, Y such that dim ker $(T) < \infty$ and codim ran $(T) < \infty$. Show that T is a Fredholm operator, i.e. that the condition ran(T) is closed in the definition of a Fredholm operator is automatically satisfied.

Problem 20. Let H be a Hilbert space and $K(H) \subseteq B(H)$ be the closed ideal of compact operators on H so then C(H) = B(H)/K(H) is a Banach algebra. Hence, $[T_1] = [T_2]$ if and only if $T_1 + T_2 + K$ for some compact perturbation K. Show that the following are equivalent:

- (i) [T] is invertible in C(H),
- (ii) There exists a $S \in B(H)$ such that $I TS \in K(H)$ and $I ST \in K(H)$,
- (iii) T is Fredholm.

Problem 21. For which of the three topologies ($\| \|$, SOT, WOT) is the mapping

$$B(H) \to B(H)$$
$$T \mapsto T^*$$

continuous?

Hint: The answer is yes for the norm and WOT, but no for SOT.

Counterexample: Let $S : \ell^2 \to \ell^2$ be the (left) shift, then $S^n \xrightarrow{SOT} 0$, but $(S^*)^n$ is not convergent with respect to SOT.

Problem 22. Let $A_n, B_n \subseteq B(H)$ be sequences of operators. Show

(a)
$$A_n \xrightarrow{SOT} A, B_n \xrightarrow{SOT} B \implies A_n B_n \xrightarrow{SOT} AB.$$

(b)
$$A_n \xrightarrow{wor} A, B_n \xrightarrow{wor} B \implies A_n B_n \xrightarrow{wor} AB$$
.

Problem 23. Show that the positive square root of a positive semi-definite operator is uniquely determined.

Problem 24. Let $A, B \in B(H)$.

- (a) Show that r(AB) = r(BA)
- (b) Let $A \ge B \ge 0$. Show that $A^{1/2} \ge B^{1/2}$, whereas $A^2 \ge B^2$ does not necessarily hold. *Hint*: First it can be assumed that A is invertible. The general case then follows with a limit value argument.

Problem 25. Let $V \in B(H)$. Show that the following statements are equivalent:

- (i) V is a partial isometry.
- (ii) V^* is a partial isometry.
- (iii) V^*V is a projection (namely a projection onto the domain of V).
- (iv) VV^* is a projection (namely a projection onto ran V).
- (v) $V = VV^*V$.
- (vi) $V^* = V^* V V^*$.